Abstract
The research aim was to study the application efficiency of alkyl sulfates and heat treatment of erythrocytes of mammals (human, horse, bull and rabbit) in order to increase their resistance to hypertonic cryohemolysis. The hemolysis rate for erythrocytes was recorded by spectrophotometry; the efficiency of alkyl sulfates was assessed on the values of maximum antihemolytic activity and the ones of effective concentrations; mammalian erythrocytes were morphologically analyzed by light microscopy. It has been found that anionic amphiphiles (sodium decyl and dodecyl sulfates) exhibit an antihemolytic activity in hypertonic cryohemolysis of erythrocytes. There was shown the transformation of erythrocytes on the “discocyte-echinocyte” type in the presence of alkyl sulfates, indicating to the distribution of amphiphilic molecules in an outer monolayer of erythrocyte membrane bilayer. It has been revealed that pre-incubation of the cells at 49 C increases the resistance to hypertonic cryohemolysis effect for human and equine erythrocytes and as well as it reduces the one for bovine and rabbit cells. Sodium decyl and sodium dodecyl sulfates exhibit an antihemolytic activity under hypertonic cryohemolysis of heat treated mammalian erythrocytes, but it is lower if compared with the control cells. The findings about distribution of alkyl sulfates in membranes and their antihemolytic activity under conditions of hypertonic cryohemolysis of heat treated erythrocytes testify to the perspective of using these substances as the tool for assessing the state of erythrocyte membranes when changing the temperatureosmotic environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.