Abstract

Micro/nanoplastics (MNPs) have been increasingly found in environments, food, and organisms, arousing wide public concerns. MNPs may enter food chains through water, posing a threat to human health. Therefore, efficient and environmentally friendly technologies are needed to remove MNPs from contaminated aqueous environments. Advanced oxidation processes (AOPs) produce a vast amount of active species, such as hydroxyl radicals (·OH), known for their strong oxidation capacity. As a result, an increasing number of researchers have focused on using AOPs to decompose and remove MNPs from water. This review summarizes the progress in researches on the removal of MNPs from water by AOPs, including ultraviolet photolysis, ozone oxidation, photocatalysis, Fenton oxidation, electrocatalysis, persulfate oxidation, and plasma oxidation, etc. The removal efficiencies of these AOPs for MNPs in water and the influencing factors are comprehensively analyzed, meanwhile, the oxidation mechanisms and reaction pathways are also discussed in detail. Most AOPs can achieve the degradation of MNPs, mainly manifest as the decrease of particle size and the increase of mass loss, but the mineralization rate is low, thus requiring further optimization for improved performance. Investigating various AOPs is crucial for achieving the complete decomposition of MNPs in water. AOPs will undoubtedly play a vital role in the future for the removal of MNPs from water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call