Abstract
Idle speed control in a fuel-injection engine system has focused on controlling long-term averages of engine speed, but short-term fluctuations of engine speed have been neglected. The torque differences among cylinders influence the idle stability and cause vibration of the vehicle. In this paper, we introduce two intelligent control systems to reduce the fluctuations of engine speed at idle, an evolutionary computing control based on genetic algorithms and a stochastic control based on Alopex algorithm. We first estimate the torque differences among the cylinders by observing an engine cycle of crankshaft angular speed. Then the uniformity level over the engine speed is fedback into the control system. It manipulates spark ignition timings to suppress unbalanced combustions among the cylinders. We test the two adaptive approaches with simulation of a nonlinear engine model, and compare their performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.