Abstract

A preliminary study was conducted using lactating British Saanen goats (n = 5) at 109 to 213 d in milk that yielded 1.67 to 3.68kg of milk/d to examine the application of a U-13C-labeled amino acid (AA) mixture obtained from hydrolyzed algal proteins as a tracer for measuring plasma flux (n = 5) and partition to the mammary gland (n = 3; arteriovenous difference) of 13 AA simultaneously. Except for Ile and Ser, there was incomplete (6 to 54%) equilibration of the tracer with AA from packed blood cells (>90% erythrocytes) during the 6-h infusions. This result agreed with the large ratio of packed cells to gradients for plasma AA concentration that was also observed. However, net mass and isotope removals by the mammary gland were predominately from plasma, indicating that the erythrocytes did not participate in kinetic exchanges. Plasma AA fluxes (millimoles per kilogram of metabolizable protein intake per kilogram of body weight0.75) differed among goats that consumed different protein sources; however, overall rates were lowest for Met (5 to 14) and His (8 to 17) and highest for Leu (48 to 70) and Ala (53 to 88). On average, 25% of plasma flux was partitioned to the mammary gland. Less than 20% of His, Ser, Phe, and Ala were directed to the mammary gland; 20 to 30% of Arg, Thr, Tyr, and Leu were directed to the mammary gland; and 30 to 40% of Pro, Ile, Lys, and Val were directed to the mammary gland. The unidirectional AA flux in the mammary gland (AA apparently available for protein syntheses, oxidation, and metabolite formation) did not match the pattern that is required for casein synthesis, suggesting differences in the metabolic requirements of AA for nonmilk protein synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call