Abstract

A new GaAs switching device with a triple-well superlattice emitter structure, prepared by molecular beam epitaxy, has been fabricated and demonstrated. An S- and N-shaped negative-differential-resistance (NDR) phenomenon, attributed primarily to the avalanche multiplications process and resonant-tunneling effect, were observed simultaneously when a proper collector-emitter voltage (VCE) was applied. The operation temperature is known from the experimental results to play an important role on the influence of the NDR behaviors. A transistor action with a common-emitter current gain of over 36 was also achieved at 300 K when a control current was employed to the base electrode. This device exhibited a significantly regenerative switching phenomenon both at room temperature and low temperature if a −VCE voltage was used. The proposed structure consequently has good potential for switching and quantum functional device applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call