Abstract
The evaluation of on-line intelligent transportation system (ITS) measures, such as adaptive route-guidance and traffic management systems, depends heavily on the use of faster than real time traffic simulation models. Off-line applications, such as the testing of ITS strategies and planning studies, are also best served by fast-running traffic models due to the repetitive or iterative nature of such investigations. This paper describes a simulation-based, iterative dynamic equilibrium traffic assignment model. The determination of time-dependent path flows is modeled as a master problem that is solved using the method of successive averages (MSA). The determination of path travel times for a given set of path flows is the network-loading sub-problem, which is solved using the space-time queuing approach of Mahut. This loading method has been shown to provide reasonably accurate results with very little computational effort. The model was applied to the Stockholm road network, which consists of 2100 links, 1191 nodes, 228 zones, representing and 4964 turns. The results show that this model is applicable to medium-size networks with a very reasonable computation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.