Abstract
In this work, a mobile laser-induced breakdown spectroscopy (LIBS) system has been successfully applied to in situ analysis of heavy metals in soil samples. The LIBS system had two working methods, which were a fixed measuring method and a handheld method. For the fixed measuring method, a simple sample pretreatment was needed to reduce the soil matrix effect generated by moisture and porosity. Experiments proved that this method could be used to semi-quantitatively detect heavy metals when combined with the traditional calibration curve method. The limits of detection for copper, lead, and zinc were all below 10 mg/kg, which satisfied the need of heavy metal detection in soil. Principal component analysis was used for soil classification, which helped to build appropriate calibration curves. On the basis of soil classification, accurate and rapid detection of heavy metals in soil is feasible. For the handheld method, spectrum intensity and stability decreased significantly compared with the fixed measuring method. However, by using the internal standard method, the stability of LIBS data was improved significantly to 6%. For soil samples with serious heavy-metal pollution, the measurement errors were less than 12%, which indicated that handheld LIBS was effective to monitor heavy-metal pollution in soil. The research results provide application support for rapid and on-site monitoring of heavy metals in soil.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have