Abstract

AbstractMobile ad hoc networks are attracting attention for their potential use in several fields such as collaborative computing and communications in indoor areas. Mobility and the absence of any fixed infrastructure make MANETs very attractive for mobility and rescue operations and time-critical applications. Considering mobility of the terminals, routing is a key process for operation of MANETs. In this paper, we analyze the performance of Optimized Link State Routing protocol in an indoor environment considering different scenarios for horizontal and vertical topologies. We evaluate the scenarios based on delay and jitter metrics. The experimental results show that for vertical topology the performance is affected more by mobility and number of hops, in comparison with the horizontal topology.

Highlights

  • A Mobile Ad hoc Network (MANET) is a group of wireless mobile terminals, which cooperate together by routing packets to each other on a temporary network

  • We carried out the experiments with different routing protocols such as OLSR and BATMAN and found that throughput of TCP were improved by reducing Link Quality Window Size (LQWS), but there were packet loss because of experimental environment and traffic interference

  • We study the impact of best-effort traffic for Mesh Topology (MT)

Read more

Summary

Introduction

A Mobile Ad hoc Network (MANET) is a group of wireless mobile terminals, which cooperate together by routing packets to each other on a temporary network. We carried out the experiments with different routing protocols such as OLSR and BATMAN and found that throughput of TCP were improved by reducing Link Quality Window Size (LQWS), but there were packet loss because of experimental environment and traffic interference. We implemented seven MANET scenarios and evaluated the performance considering delay and jitter metrics.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.