Abstract

The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC) comprises 6 categories used for the diagnosis of thyroid fine-needle aspiration biopsy (FNAB). Each category has an associated risk of malignancy, which is important in the management of a thyroid nodule. More accurate predictions of malignancy may help to reduce unnecessary surgery. A machine learning algorithm (MLA) was developed to evaluate thyroid FNAB via whole slide images (WSIs) to predict malignancy. Files were searched for all thyroidectomy specimens with preceding FNAB over 8years. All cytologic and surgical pathology diagnoses were recorded and correlated for each nodule. One representative slide from each case was scanned to create a WSI. An MLA was designed to identify follicular cells and predict the malignancy of the final pathology. The test set comprised cases blindly reviewed by a cytopathologist who assigned a TBSRTC category. The area under the receiver operating characteristic curve was used to assess the MLA performance. Nine hundred eight FNABs met the criteria. The MLA predicted malignancy with a sensitivity and specificity of 92.0% and 90.5%, respectively. The areas under the curve for the prediction of malignancy by the cytopathologist and the MLA were 0.931 and 0.932, respectively. The performance of the MLA in predicting thyroid malignancy from FNAB WSIs is comparable to the performance of an expert cytopathologist. When the MLA and electronic medical record diagnoses are combined, the performance is superior to the performance of either alone. An MLA may be used as an adjunct to FNAB to assist in refining the indeterminate categories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.