Abstract

This paper addresses the security assessment of power systems when the simultaneous loss of K components is considered. The problem is formulated as a bilevel program. The upper-level optimization identifies a set of simultaneous out-of-service components in the power system, whereas the lower-level optimization models the reaction of the system operator against the outages selected in the upper level. The system operator reacts by determining the optimal power system operation under contingency. Due to the inherent nonconvexity and nonlinearity of the resulting bilevel problem, efficient solution procedures are yet to be explored. A genetic algorithm is proposed in this paper to attain high-quality near-optimal solutions with moderate computational effort. The modeling flexibility provided by this evolution-inspired methodology makes it suitable for this kind of bilevel programming problems. Numerical results demonstrate the effectiveness of the proposed approach in the identification of critical power system components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.