Abstract
In recent years, 3D printing technology has become very important in many fields of science, manufacturing, design, medicine, aviation, sports, etc. Furniture design and manufacturing are also not left out of this trend. In this study, the results of bending moments and stiffness of joints of thin structural elements connected by 3D printing with polylactic acid (PLA) connectors are given. The connectors are newly developed, and information on their strength characteristics is lacking in the literature. Ten joints were investigated, made with 9 and 12 mm plywood and 6 mm MDF. The tested joints constructed by 3D-printed connecting elements show a high strength under arm compression bending load, between 44.16 and 24.02 N·m. The stiffness coefficients of joints with 3D-printed connecting elements are between 348 and 145 N·m/rad and are higher than those of conventional detachable mitre joints but lower than those of glued ones. The type of filling of the hollow section of the connecting elements and the wall thickness influenced the joints' strength and stiffness. Reducing the width of the connecting elements from 40 to 30 mm and the inner radius between the arms from 2 to 1 mm does not significantly affect the joints' strength and stiffness coefficients.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have