Abstract
In this paper, the applications of thermoplastic, thermoset polymers, and a brief description of the functions of each subsystem are reviewed. The synthetic route and characteristics of polymeric materials are presented. The mechanical properties of polymers such as impact behavior, tensile test, bending test, and thermal properties like mold stress-relief distortion, generic thermal indices, relative thermal capability, and relative thermal index are mentioned. Furthermore, this paper covers the electrical behavior of polymers, mainly their dielectric strength. Different techniques for evaluating polymers’ suitability applied for electrical insulation are covered, such as partial discharge and high current arc resistance to ignition. The polymeric materials and processes used for manufacturing cables at different voltage ranges are described, and their applications to high voltage DC systems (HVDC) are discussed. The evolution and limitations of polymeric materials for electrical application and their advantages and future trends are mentioned. However, to reduce the high cost of filler networks and improve their technical properties, new techniques need to be developed. To overcome limitations associated with the accuracy of the techniques used for quantifying residual stresses in polymers, new techniques such as indentation are used with higher force at the stressed location.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.