Abstract
Task scheduling problem in heterogeneous systems (TSPHS) is a multiobjective optimization problem (MOP). Multiobjective evolutionary algorithms (MOEA) are well suited for solving multiobjective task scheduling problem. In this paper, the two conflicting objectives namely, makespan and reliability are considered. The performance of MOEAs can be improved by hybridization with local search. Hybridization of MOEAs improves the convergence speed to Pareto front. Simple neighborhood search (SNS) algorithm is used as the local search algorithm. The weighted-sum based approach for solving the MOP with its hybrid version is compared. Then the two MOEAs: SPEA2 and NSGA-II are compared with each other in the pure and hybrid version for random task graphs and also for a real-time numerical application graph. The simulations confirm that Hybrid NSGA-II is best suited for solving the task scheduling problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.