Abstract

We suggest an alternative to conventional coating methods for accident-tolerant fuel (ATF) cladding. A Zircaloy-4 tube was inserted into metal tubes of different materials and the inserted tubes were subjected to physical force at room temperature. The manufactured tube exhibited a pseudo-single tube (PST) structure and had higher thermal stability than a Zircaloy-4 tube. Optical microscopy and scanning electron microscopy images showed that the PST had a uniform and well-bonded interface structure, i.e., no gaps or voids were found at the interface between the inner and outer tubes. Energy-dispersive X-ray spectroscopy analysis confirmed that the metal components did not interdiffuse at the interface of the PST, even after being kept at 600 and 900 °C for 1 h and rapidly cooled to room temperature. Unlike pure Zircaloy-4 tubes, Zircaloy-4/stainless use steel (SUS) 316 PST did not show significant structural collapse, even after being stored at 1200 °C for 1 h. Based on these results, if a PST was fabricated using a Zircaloy-4 tube thinner than the Zircaloy-4 tube used in this study and an outer tube of micron-scale thickness, swaging may be a feasible alternative to Zircaloy-4-based ATF cladding.

Highlights

  • Nuclear fuel claddings are crucial core materials in nuclear power plants

  • We propose swaging as an alternative method for the production of accident-tolerant fuel (ATF) claddings

  • We suggest that swaging can be an alternative process for the fabrication of ATF claddings

Read more

Summary

Introduction

Nuclear fuel claddings are crucial core materials in nuclear power plants. They effectively transfer the heat generated by the fission reaction to the coolant, while preventing the fuel and fission products from leaking into the coolant. Selecting cladding materials with high corrosion resistance, suitable mechanical properties, and the ability to withstand high pressures, temperatures, and irradiation is vital. Zirconium alloys have shown high potential as cladding materials, owing to their low neutron absorption rate, high corrosion resistance, and stable mechanical properties under the operating conditions of the reactor [1,2,3,4]. Zirconium alloys were found to lack sufficient physical and chemical stability in the Fukushima nuclear power plant accident, highlighting the necessity for research on the development of accident-tolerant fuel (ATF) claddings with improved physicochemical stability. Several alternative ATF claddings have been developed in and outside of

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call