Abstract

Information on phenological metrics of individual plant species is meager. Phenological metrics generation for a specific plant species can prove beneficial if the species is ecologically or economically important. Teak, a dominating tree in most regions of the world has been focused on in the present study due to its multiple benefits. Forecasts on such species can attain a substantial improvement in their productivity. MODIS NDVI time series when subjected to statistical smoothing techniques exhibited good output with Tukey’s smoothing (TS) with a low RMSE of 0.042 compared to single exponential (SE) and double exponential (DE). Phenological metrics, namely, the start of the season (SOS), end of the season (EOS), maximum of the season (MAX), and length of the season (LOS) were generated using Tukey-smoothed MODIS NDVI data for the years 2003–2004 and 2013–2014. Post shifts in SOS and EOS by 14 and 37 days respectively with a preshift of 28 days in MAX were observed in the year 2013–2014. Preshift in MAX was accompanied by an increase in greenness exhibiting increased NDVI value.LOS increased by 24 days in the year 2013–2014, showing an increase in the duration of the season of teak. Dates of these satellite-retrieved phenological occurrences were validated with ground phenological data calculated using crown cover assessment. The present study demonstrated the potential of a spatial approach in the generation of phenometrics for an individual plant species, which is significant in determining productivity or a crucial trophic link for a given region.

Highlights

  • IntroductionThe occurrence dates of phenophases such as blooming, full leaf expansion, leaf coloration, or senescence are keys for the determination of phenological metrics, viz., start of the season (SOS), end of the season (EOS), and maximum of the season (MAX) of any tree [1]

  • Comparison of reconstructed normalized difference vegetation index (NDVI) time series using single exponential (SE), double exponential (DE), and Tukey’s smoothing (TS) techniques showed that both SE and DE smoothed higher values but could not encompass all the outliers (Figures 2 and 3)

  • The present study tested the potential of three statistical techniques, viz., single exponential, double exponential, and Tukey smoothing

Read more

Summary

Introduction

The occurrence dates of phenophases such as blooming, full leaf expansion, leaf coloration, or senescence are keys for the determination of phenological metrics, viz., start of the season (SOS), end of the season (EOS), and maximum of the season (MAX) of any tree [1]. These metrics can prove to be of crucial importance in the tree’s productivity assessment. More focus is placed on generating phenological metrics of forest

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call