Abstract

Gas crossover is critical in proton exchange membrane (PEM)-based electrochemical systems. Recently, single-layer graphene (SLG) has gained great research interest due to its outstanding properties as a barrier layer for small molecules like hydrogen. However, the applicability of SLG as a gas-blocking interlayer in PEMs has yet to be fully understood. In this work, two different approaches for transferring SLG from a copper or a polymeric substrate onto PEMs are compared regarding their application in low-temperature PEM fuel cells. The SLG is sandwiched between two Nafion XL membranes to form a stable composite membrane. The successful transfer is confirmed by Raman spectroscopy and in ex situ hydrogen permeation experiments in the dry state, where a reduction of 50% upon SLG incorporation is achieved. The SLG composite membranes are characterized by their performance and hydrogen-blocking ability in a fuel cell setup at typical operating conditions of 80 °C and with fully humidified gases. The performance of the fuel cell incorporating an SLG composite membrane is equal to that of the reference cell when avoiding the direct etching process from a copper substrate, as remnants from copper etching deteriorate the performance of the fuel cell. For both transfer processes, the hydrogen crossover reduction of SLG composite membranes is only 15-19% (1.5 barabs) in the operating fuel cell. Further, hydrogen pumping experiments suggest that the barrier function of SLG impairs the water transport through the membrane, which may affect water management in electrochemical applications. In summary, this work shows the successful transfer of SLG into a PEM and confirms the effective hydrogen-blocking capability of the SLG interlayer. However, the hydrogen-blocking ability is significantly reduced when running the cell at the typical humidified operating conditions of PEM fuel cells, which follows from a combination of reversible interlayer alteration upon humidification and irreversible defect formation upon PEM fuel cell operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.