Abstract

We report near-zero crossover for vanadium cross-permeation through single-layer graphene immobilized at the interface of two Nafion® polymer electrolyte membranes. Vanadium ion diffusion and migration, including proton mobility through membrane composites, were studied with and without graphene under diffusion and migration conditions. Single-layer graphene was found to effectively inhibit vanadium ion diffusion and migration under specific conditions. The single-layer graphene composites also enabled remarkable ion transmission selectivity improvements over pure Nafion® membranes, with proton transport being four orders of magnitude faster than vanadium ion transport. Resistivity values of 0.02 ± 0.005 Ω cm2 for proton and 223 ± 4 Ω cm2 for vanadium ion through single atomic layer graphene are reported. This high selectivity may have significant impact on flow battery applications or for other electrochemical devices where proton conductivity is required, and transport of other species is detrimental. Our results emphasize that crossover may be essentially completely eliminated in some cases, enabling for greatly improved operational viability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.