Abstract

AbstractHigh-energy particles incident to a semiconductor sensitively produce electron-hole pairs and the excited current has been used for radiation detectors. Although semiconductors have advantages such as high sensitivity and fast response, a drawback is weakness in radiation damage. To improve the radiation resistance, effects of shallow-impurity doping was explored for Si. Specimens of CZ-Si doped with P or B were bombarded with 17 MeV protons. The radiation-induced current of doped Si has been evaluated, as a function of proton fluence. The signal of particle-induced conductivity showed a fairly constant response to a proton flux, up to 1015 ions/cm2. The fluence range applicable as Si sensors was extended 103-104 times as much as that of non-doped Si, instead of a lower signal-to-noise ratio. Shallow impurities passivate the deep centers of radiation-induced defects, and the radiation tolerance continues until the pre-existent carriers are exhausted. The tolerant fluence is also usable to detect the integrated fluence, by controlling the initial impurity concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.