Abstract

Recently, entransy dissipation theory showed its potential applicability in heat exchanger design optimization. Physical definition of two-phase entransy is presented in this study to extend its application to heating, ventilation, air conditioning and refrigeration systems. In this study, the evaluation of two-phase entransy is achieved by optimizing one tube-fin heat exchanger and one microchannel heat exchanger based on a validated heat exchanger modeling tool. Based on analytical approach and optimization results, the applicability and necessity of using entransy dissipation based thermal resistance are discussed. It has been proven that the entransy dissipation is an effective way to optimize heat exchangers with air flow rate as one design variable but has its limitation for optimizing heat exchangers with fixed flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.