Abstract

Entransy has been applied and studied in a broad range of heat transfer optimizations recently. Current study proposes the entransy of evaporators to conduct the optimization of heat exchangers in heating, ventilation, air conditioning and refrigeration systems. A novel finless bare tube heat exchanger was studied using a validated heat exchanger modeling tool. The capacity based optimization and entransy dissipation based thermal resistance were used and compared. The applicability of using entransy dissipation based thermal resistance in this type of heat exchanger optimization has been discussed. It has been demonstrated that minimizing entransy dissipation and maximizing capacity are equivalent to optimizing evaporators with fixed flow rates and different when optimizing evaporators with variable flow rates and the deviation is negligible when heat exchanger capacity is small (∼1 kW) and more obvious as heat exchanger capacity increases. Thus entransy dissipation based thermal resistance could be used as an alternative optimization index to capacity for evaporators with fixed flow rate and small capacity evaporators with variable flow rates and should be used individually with capacity as an optimization index for evaporators with large capacity and variable flow rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.