Abstract

Starting from a second-order Fuchsian differential equation having five regular singular points, an equation obeyed by a function proportional to the first derivative of the solution of the Heun equation, we construct several expansions of the solutions of the general Heun equation in terms of Appell generalized hypergeometric functions of two variables of the first kind. Several cases when the expansions reduce to those written in terms of simpler mathematical functions such as the incomplete Beta function or the Gauss hypergeometric function are identified. The conditions for deriving finite-sum solutions via termination of the series are discussed. In general, the coefficients of the expansions obey four-term recurrence relations; however, there exist certain choices of parameters for which the recurrence relations involve only two terms, though not necessarily successive. For such cases, the coefficients of the expansions are explicitly calculated and the general solution of the Heun equation is constructed in terms of the Gauss hypergeometric functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.