Abstract

In our previous studies, chronic treatment of rats with a new beta 3-adrenoceptor agonist, CL 316,243, retarded diet-induced obesity and promoted thermogenesis in young animals and reversed established diet-induced obesity in older animals that continued to eat a high fat diet. Reversal of obesity was associated with shrinking of enlarged white adipocytes but the number of mature white adipocytes, which had not been increased by the diet, was not reduced. Drug-treatment induced appearance of abundant brown adipocytes in white adipose tissue (WAT) depots as well as hypertrophy of brown adipose tissue (BAT) in both lean and diet-induced obese rats. To find out whether the known hyperplasia of white adipocytes in the obese fa/fa rat could be reversed by CL 316,243-treatment and whether the grossly enlarged WAT depots of the obese fa/fa rat contain precursors to brown adipocytes. CL 316,243 infusion (1 mg/kg/d) reduced abdominal fat. The loss of fat was due to a decrease in white adipocyte size, with no loss of the markedly elevated number of adipocytes in the fa/fa rats. Resting metabolic rate increased by 40% in lean rats, by 70% in fa/fa rats. Food intake decreased in the hyperphagic fa/fa rats but did not change in lean rats, in both lean and fa/fa rats, a marked increase in protein content of retroperitoneal WAT was associated with appearance of abundant densely-stained brown adipocytes expressing uncoupling protein (UCP) but total number of cells (from DNA content) actually decreased. Hyperinsulinemia and hyperglycemia of fa/fa rats were reduced by treatment, indicating improved sensitivity to insulin. Abundant precursors to brown adipocytes are present in WAT depots of fa/fa rats and much of the exaggerated increase in resting metabolic rate induced by CL 316,243 occurs in these cells. This beta 3-adrenoceptor agonist is an effective anti-obesity and anti-diabetic agent in fa/fa rats. It does not bring about disappearance of mature white adipocytes but does bring about a remodelling of WAT, with a marked change in cell composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call