Abstract

The repression of genes in regions of heterochromatin is known as transcriptional silencing. It occurs in a wide range of organisms and can have importance in adaptation to the environment, developmental changes and disease. The model organism Saccharomyces cerevisiae has been used for many years to study transcriptional silencing, but until recently no study has been made in relation to ploidy. The aim of this work was to compare transcriptional silencing in haploids and diploids at both telomeres and the hidden mating-type (HM) loci. Transcriptional silencing was assayed, by growth on 5-fluoroorotic acid (5-FOA) media or by flow cytometry, on strains where a telomere or HM locus was marked. RNA levels were measured by quantitative RT-PCR to confirm that effects were transcriptional. 5-FOA assays and flow cytometry were consistent with transcriptional silencing at telomeres and at HML being reduced as ploidy increases which agreed with conclusions in previous publications. However, QRT-PCR revealed that transcriptional silencing was unaffected by ploidy and thus protein levels were increasing independently of RNA levels. At telomere XI left (XI-L), changes in protein level were strongly influenced by mating-type, whereas at HML mating-type had much less influence. The post-transcriptional effects seen in this study, illustrate the often ignored need to measure RNA levels when assaying transcriptional silencing in Saccharomyces cerevisiae.

Highlights

  • In Saccharomyces cerevisiae transcriptional silencing occurs at three regions of the genome: some telomeres, the hidden mating-type left (HML) and hidden mating-type right (HMR) loci, and the rDNA locus [1]

  • We have demonstrated that transcriptional silencing at telomeres or HML is unaffected by ploidy or by mating-type

  • By measuring both RNA and protein abundance we have identified multiple levels of regulation for reporter genes located in heterochromatic regions

Read more

Summary

Introduction

In Saccharomyces cerevisiae transcriptional silencing occurs at three regions of the genome: some telomeres, the hidden mating-type left (HML) and hidden mating-type right (HMR) loci, and the rDNA locus [1]. Rap binds to telomeric repeats, and there are sites for the origin recognition complex (ORC) and Abf1p in the subtelomeric core X region. Telomere-associated silencing is known as telomere position effect (TPE) [5]. It is observed at some, but not all, chromosome ends and is maximal at the core X region [6,7]. It is as yet unknown why yeast chromosome ends behave differently in terms of silencing and it is not known what significance TPE has to this organism

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.