Abstract

Abstract The study of spiral structures in protoplanetary disks is of great importance for understanding the processes in the disks, including planet formation. Bright spiral arms were detected in the disk of young star CQ Tau by Uyama et al. in the H and L bands. The spiral arms are located inside the gap in millimeter-sized dust, discovered earlier using Atacama Large Millimeter/submillimeter Array observations. To explain the gap, Ubeira Gabellini et al. proposed the existence of a planet with the semimajor axis of 20 au. We obtained multi-epoch observations of a spiral feature in the circumstellar envelope of CQ Tau in the I c band using a novel technique of differential speckle polarimetry. The observations covering a period from 2015 to 2021 allow us to estimate the pattern speed of the spiral: −0.°2 ± 1.°1 yr−1 (68% credible interval; positive value indicates counterclockwise rotation), assuming a face-on orientation of the disk. This speed is significantly smaller than expected for a companion-induced spiral, if the perturbing body has a semimajor axis of 20 au. We emphasize that the morphology of the spiral structure is likely to be strongly affected by shadows of a misaligned inner disk detected by Eisner et al.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call