Abstract

Several studies have investigated the transmission of vibration from the vibrating plate of a whole-body vibration training machine (WBVTM) to different locations on the human body. No known work has investigated the interface force between the vibrating plate of the machine and the human body. This paper investigates the effect of bending the knees and the vibration frequency on the interface force (presented as apparent mass (AM)) between the vibrating plate and the body. Twelve male subjects stood with four different knee angles (180, 165, 150 and 135°) and were exposed to sinusoidal vertical vibration at eight frequencies in the range of 17–42 Hz. The vertical acceleration and the interface force between the body and the vibrating plate were measured and used to calculate the AM. The acceleration and force depended on the frequency and were found to vary with both the adopted posture and subject. The AM generally decreased with increasing the frequency but showed a peak at 24 Hz which was clearer when the knees were bent. Bending the knees showed an effect similar to increasing the damping of a system with base excitation; increasing the damping reduced the AM in the resonance region but increased the AM at higher frequencies. Users of WBVTMs have to be careful when choosing the training posture: although, as shown in previous studies, bending the knees reduces the transmission of vibration to the spine, it increases the interface forces which might indicate increased stresses on the lower legs and joints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.