Abstract

ObjectiveCaffeic acid phenethyl ester (CAPE), a natural honeybee product exhibits a spectrum of biological activities including antimicrobial, anti-inflammatory, antioxidant and antitumor actions. The purpose of this research was to investigate the anticancer potential of CAPE and its molecular mechanism in human oral cancer cell lines (YD15, HSC-4 and HN22 cells). DesignTo determine the apoptotic activity of CAPE and identify its molecular targets, trypan blue exclusion assay, soft agar assay, Western blot analysis, DAPI staining, and live/dead assay were performed. ResultsCAPE significantly suppressed transformation of neoplastic cells induced by epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol 13-acetate (TPA) without inhibiting growth. CAPE treatment inhibited cell growth, increased the cleavages of caspase-3 and poly (ADP-ribose) polymerase (PARP), and augmented the number of fragmented nuclei in human oral cancer cell lines. CAPE activated Bax protein causing it to undergo a conformational change, translocate to the mitochondrial outer membrane, and oligomere. CAPE also significantly increased Puma expression and interestingly Puma and Bax were co-localized. ConclusionOverall, these results suggest that CAPE is a potent apoptosis-inducing agent in human oral cancer cell lines. Its action is accompanied by up-regulation of Bax and Puma proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.