Abstract

Apolipoprotein M (ApoM) is a type of apolipoprotein. It is well known that high‑density lipoprotein (HDL) decreases inflammatory responses via the apoM‑sphingosine‑1‑phosphate (S1P) pathway. The present study further investigated the importance of ApoM in the inhibitory effects of HDL on inflammation. Mice with an apoM gene deficiency (apoM‑/‑) were employed to investigate the effects of ApoM on the expression of interleukin‑1β (IL‑1β), monocyte chemotactic protein‑1 (MCP‑1), S1P receptor‑1 (S1PR1) and 3β‑hydroxysterol Δ‑24‑reductase (DHCR24), as compared with in wild‑type mice (apoM+/+). Furthermore, cell culture experiments were performed using a permanent human hybrid endothelial cell line (EA.hy926). Cells were cultured in the presence of recombinant human apoM (rec‑apoM) or were induced to overexpress apoM (apoMTg); subsequently, cells were treated with tumor necrosis factor‑α (TNF‑α), in order to investigate the effects of ApoM on IL‑1β and MCP‑1. The results demonstrated that the mRNA expression levels of IL‑1β and MCP‑1 were significantly higher in the liver following administration of lipopolysaccharide in apoM‑/‑ mice compared with in apoM+/+ mice. In cell culture experiments, when cells were pre‑cultured with rec‑apoM or were engineered to overexpress apoM (apoMTg), they exhibited decreased expression levels of IL‑1β and MCP‑1 following TNF‑α treatment compared with in normal apoM‑expressing cells (apoMTgN). Furthermore, the mRNA expression levels of IL‑1β and MCP‑1 were significantly elevated following addition of the S1PR1 inhibitor W146, but not by the scavenger receptor class B type I inhibitor, block lipid transport‑1 (BLT‑1), in apoMTg cells prior to TNF‑α treatment. Conversely, there were no differences in these inflammatory biomarkers under the same conditions in apoMTgN cells. The mRNA expression levels of DHCR24 were significantly reduced by the addition of BLT‑1 prior to TNF‑α treatment in apoMTg cells; however, there was no difference in the expression of this inflammatory biomarker in apoMTgN cells. In conclusion, ApoM displayed inhibitory effects against the inflammatory response invivo and in vitro; these effects may be induced via the S1PR1 and DHCR24 pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.