Abstract
Apolipoprotein F (ApoF) modulates lipoprotein metabolism by selectively inhibiting cholesteryl ester transfer protein activity on LDL. This ApoF activity requires that it is bound to LDL. How hyperlipidemia alters total plasma ApoF and its binding to LDL are poorly understood. In this study, total plasma ApoF and LDL-bound ApoF were quantified by ELISA (n = 200). Plasma ApoF was increased 31% in hypercholesterolemic plasma but decreased 20% in hypertriglyceridemia. However, in donors with combined hypercholesterolemia and hypertriglyceridemia, the elevated triglyceride ameliorated the rise in ApoF caused by hypercholesterolemia alone. Compared with normolipidemic LDL, hypercholesterolemic LDL contained ∼2-fold more ApoF per LDL particle, whereas ApoF bound to LDL in hypertriglyceridemia plasma was <20% of control. To understand the basis for altered association of ApoF with hyperlipidemic LDL, the physiochemical properties of LDL were modified in vitro by cholesteryl ester transfer protein ± LCAT activities. The time-dependent change in LDL lipid composition, proteome, core and surface lipid packing, LDL surface charge, and LDL size caused by these factors were compared with the ApoF binding capacity of these LDLs. Only LDL particle size correlated with ApoF binding capacity. This positive association between LDL size and ApoF content was confirmed in hyperlipidemic plasmas. Similarly, when in vitro produced and enlarged LDLs with elevated ApoF binding capacity were incubated with LPL to reduce their size, ApoF binding was reduced by 90%. Thus, plasma ApoF levels and the activation status of this ApoF are differentially altered by hypercholesterolemia and hypertriglyceridemia. LDL size is a key determinate of ApoF binding and activation.
Highlights
Cholesteryl ester transfer protein (CETP) promotes the net movement of cholesteryl ester (CE) and triglyceride (TG) between plasma lipoproteins [1,2,3,4]
In HyperTC subjects, two distinct groups were observed, one where Apolipoprotein F (ApoF) levels were elevated compared to control, and a second, smaller group where ApoF levels were very low (< 10% of the group average)
In the larger HyperTC group, ApoF levels were elevated 34%, which was largely due to a 42% increase in female donors ApoF compared to normolipidemic individuals
Summary
Cholesteryl ester transfer protein (CETP) promotes the net movement of cholesteryl ester (CE) and triglyceride (TG) between plasma lipoproteins [1,2,3,4]. A typical incubation contained ~ 0.4 ml VLDL (1.45 mg TG), 0.6 ml LDL (2.3 mg TC) plus 2.4 ml of freshly isolated lipoprotein-deficient plasma as a source of Journal Pre-proof CETP and LCAT activities.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have