Abstract
Background and aimsLCAT esterifies cholesterol in both HDL (α-activity) and apoB-containing lipoproteins (β-activity). The main activator of LCAT β-activity is apoE, which in humans exists in 3 main different isoforms (E2, E3 and E4). Here, to gather insights into the potential role of LCAT in apoB-containing lipoprotein metabolism, we investigated the ability of apoE isoforms to promote LCAT-mediated cholesterol esterification. MethodsWe evaluated the plasma cholesterol esterification rate (CER) in 311 individuals who express functional LCAT and either apoE2, apoE3, or apoE4 and in 28 individuals who also carried LCAT mutations causing selective loss of LCAT α-activity (Fish-Eye Disease (FED)-causing mutations). The association of carrier status with CER was determined using an adjusted linear regression model. The kinetic of LCAT activity towards reconstituted HDLs (rHDLs) containing each apoE isoform was determined using the Michaelis-Menten model. ResultsPlasma CER was ∼20% higher in apoE2 carriers compared to apoE3 carriers, and ∼30% higher in apoE2 carriers compared to apoE4 carriers. After adjusting for age, sex, total cholesterol, HDL-C, apoA-I, apoB, chronic kidney disease diagnosis, zygosity, and LCAT concentration, CER remained significantly different among carriers of the three apoE isoforms. The same trend was observed in carriers of FED-causing mutations. rHDLs containing apoE2 were associated with a lower affinity but higher maximal esterification rate, compared to particles containing apoE3 or apoE4. ConclusionThe present results suggest that the apoE2 isoform is associated with a higher LCAT-mediated cholesterol esterification. This observation may contribute to the characterization of the peculiar functional properties of apoE2.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have