Abstract

Although it is known that lipid metabolism plays a role in insulin resistance in type 2 diabetes and in obesity, the mechanism is still largely unknown. Apolipoprotein E (ApoE) regulates plasma lipid levels and also plays a role in the uptake of lipids into various tissues. To investigate whether the suppression of whole-particle lipoprotein uptake into tissues affects insulin responsiveness and the diabetic condition, we examined the effect of an ApoE (also known as Apoe) gene deletion in MKR mice, a mouse model of type 2 diabetes. ApoE ( -/- ), MKR, ApoE ( -/- )/MKR and control mice were placed on a high-fat, high-cholesterol diet for 16 weeks. Glucose tolerance, serum insulin, blood glucose, insulin tolerance, tissue triacylglycerol content and atherosclerotic lesions were assessed. ApoE ( -/- )/MKR and ApoE ( -/- ) mice showed significantly improved blood glucose, glucose tolerance and insulin sensitivity. Reduced triacylglycerol content in liver and reduced fat accumulation in liver and adipose tissue were found in ApoE ( -/- )/MKR and ApoE ( -/- ) mice compared with control and MKR mice. ApoE ( -/- ) and ApoE ( -/- )/MKR mice demonstrated similarly large atherosclerotic lesions, whereas MKR and control mice had small atherosclerotic lesions. We demonstrated that ApoE deficiency abrogates insulin resistance in a mouse model of type 2 diabetes, suggesting that lipid accumulation in tissue is a major cause of insulin resistance in this mouse model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.