Abstract

We design and demonstrate the fully-etched apodized grating couplers based on the silicon-on-insulator (SOI) platform using subwavelength structure for both transverse electric (TE) and transverse magnetic (TM) modes operation. The subwavelength grating (SWG) is used to engineer the refractive index using second-order effective medium theory (EMT). The whole designing procedure is given in details, especially a feasible and programmable method is developed to precisely manipulate the coupling strength of each grating cycle. A perfect Gaussian output beam can be synthesized for the TE mode operation, achieving a field overlap up to 98.3% with the Gaussian fiber mode. The simulated peak coupling losses are −4.63 and −2.99 dB for the TE mode and the TM mode, respectively, which are comparable with conventional shallowly etched grating couplers, realizing a fabrication simplification without performance penalty. The measured peak coupling loss is −7.6 dB for the TE mode coupler with a 1 dB bandwidth of 45 nm, and −6.1 dB for the TM mode coupler with a 1 dB bandwidth of 34 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.