Abstract

Spatially resolved spectroscopic optical coherence tomography (OCT) has been demonstrated to be a convenient tool for spectral analysis in turbid media. For a full-field OCT configuration using a Mirau objective in the visible range, we found that the effective numerical aperture varies over the field of view, leading to field-dependent spectral shifts in the reconstructed spectra. Interferograms recorded with quasi-monochromatic lights are theoretically fitted with a general Mirau interference formula, and we propose a numerical correction method for white-light spectroscopy. The method is then tested successfully for the measure of the reflectivity of a plane gold sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.