Abstract
We engineer aperiodic nanostructures for enhanced omnidirectional light extraction and coupling of 1.55 μm radiation to distinctive optical resonances carrying of orbital angular momentum (OAM) using light emitting Si-based materials. By systematically studying nanopillar arrays with varying pillar separations and increasing degree of rotational symmetry in Fourier space, we show that omnidirectional extraction is achieved with circularly symmetric Fourier space, leading to best light emission enhancement from planar devices such as LEDs or lasers. To demonstrate the potential of active aperiodic structures with azimuthally isotropic k-space, we fabricate nanopillar arrays of erbium doped silicon-rich nitride using electron beam lithography and reactive ion etching. Experimental results obtained using leaky-mode photoluminescence spectroscopy prove over 10 times extraction enhancement at 1.55 μm from aperiodic golden angle spirals (GA spirals), in good agreement with design based on analytical Bragg scattering and finite difference time domain calculations. In addition, by imaging Er radiation in direct and reciprocal space, we demonstrate that GA spiral arrays support angularly isotropic emission patterns and distinctive optical resonances with a well-defined azimuthal structure carrying OAM. These findings offer unique opportunities for the engineering of novel active structures that leverage isotropic emission patterns and structured light for secure optical communication, sensing, imaging, and light sources on a Si platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.