Abstract
The process of neurodegenerative diseases has always been accompanied by neuroinflammatory response characterized by microglia activation. Two phenotypes of microglial polarization: the classically activated M1 type and the alternative activated M2 type, have been described. Although apelin-13 has been shown to have neuroprotective effects, its specific mechanism of anti-neuritis is still unclear. The aim of this study was to investigate whether apelin-13 can exert anti-neuroinflammatory effects by regulating the polarization of N9 microglia. MTT assay showed that 0.1 μM apelin-13 (24 h) and 2 μg/mL LPS (6 h) treatment had no significant effect on cell viability of N9 microglia. The combined treatment of Apelin-13 and LPS did not affect the viability of N9 microglia. N9 microglia were pretreated with 0.1 μM apelin-13 for 24 h, followed by incubation with LPS for 6 h. Morphological results indicated that apelin-13 (0.1 μM) inhibited LPS-induced N9 microglial activation as observed by smaller soma and slender process compared to LPS-treated group. Western blot confirmed that apelin-13 decreased the level of proinflammatory factor iNOS, IL-6 and up-regulated the level of anti-inflammatory factor arg-1 and IL-10 in N9 microglia. Flow cytometry revealed that apelin-13 inhibited the expression of M1 microglia activation marker CD86 and up-regulated the expression of M2 marker CD206. Furthermore, the data displayed that apelin-13 decreased the expression of p-STAT3 and the radio of p-STAT3/t-STAT3 in M1-type N9 microglia induced by LPS. In conclusion, our results indicated apelin-13 ameliorated neuroinflammation by shifting N9 microglial M1 polarization toward the M2 phenotype, the underlying mechanism of which may be related to STAT3 signals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have