Abstract

BackgroundGlobal end-diastolic volume (GEDV) measured by transpulmonary thermodilution is regarded as indicator of cardiac preload. A bolus of cold saline injected in a central vein travels through the heart and lung, but also the aorta until detection in a femoral artery. While it is well accepted that injection in the inferior vena cava results in higher values, the impact of the aortic volume on GEDV is unknown. In this study, we hypothesized that a larger aortic volume directly translates to a numerically higher GEDV measurement.MethodsWe retrospectively analyzed data from 88 critically ill patients with thermodilution monitoring and who did require a contrast-enhanced thoraco-abdominal computed tomography scan. Aortic volumes derived from imaging were compared with GEDV measurements in temporal proximity.ResultsMedian aortic volume was 194 ml (interquartile range 147 to 249 ml). Per milliliter increase of the aortic volume, we found a GEDV increase by 3.0 ml (95% CI 2.0 to 4.1 ml, p < 0.001). In case a femoral central venous line was used for saline bolus injection, GEDV raised additionally by 2.1 ml (95% CI 0.5 to 3.7 ml, p = 0.01) per ml volume of the vena cava inferior. Aortic volume explained 59.3% of the variance of thermodilution-derived GEDV. When aortic volume was included in multivariate regression, GEDV variance was unaffected by sex, age, body height, and weight.ConclusionsOur results suggest that the aortic volume is a substantial confounding variable for GEDV measurements performed with transpulmonary thermodilution. As the aorta is anatomically located after the heart, GEDV should not be considered to reflect cardiac preload. Guiding volume management by raw or indexed reference ranges of GEDV may be misleading.

Highlights

  • Transpulmonary thermodilution is commonly used and recommended in current guidelines for the management of critically ill patients with cardiovascular instability to assess cardiac output (CO) and volume status [1, 2]

  • It was recently shown that GEDV indexed to body surface area (GEDVI) did not reflect even markedly enlarged left-ventricular end-diastolic volumes measured by cardiac angiography [7]

  • Aortic volume increased by 2.3 ml per year of patient age

Read more

Summary

Introduction

Transpulmonary thermodilution is commonly used and recommended in current guidelines for the management of critically ill patients with cardiovascular instability to assess cardiac output (CO) and volume status [1, 2]. A prospective observational trial found a large inter-individual variability of GEDV and GEDVI and hypothesized that the aortic volume might be the source of the observed heterogeneity [10]. This potential explanation was based on the fact that the cold saline bolus injected for measurement must transit the aorta to reach the temperature detector placed in a femoral artery. Neither the theoretical derivation nor contemporary reviews of GEDV and GEDVI measured by transpulmonary thermodilution do consider the aortic volume [13,14,15,16]. Global end-diastolic volume (GEDV) measured by transpulmonary thermodilution is regarded as indicator of cardiac preload. We hypothesized that a larger aortic volume directly translates to a numerically higher GEDV measurement

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.