Abstract

Cell-based therapies are being evaluated in the setting of degenerative pathophysiologic conditions. The search for the ideal method of delivery and improvement in cell engraftment continue to pose a challenge. This study explores the feasibility of introducing mesenchymal stem cells (MSC) following aortic injury in a porcine model. Bone marrow-derived MSC were obtained from eight pigs, characterized for the MSC markers CD13 and CD 29, labeled with green fluorescent protein (GFP), and collected for autologous injection in a porcine model of abdominal aortic aneurysm (AAA). The pigs were euthanized (1-7 d) after the procedure to assess the histologic characteristics and presence of MSC in the aortic tissue. Negative controls included noninjured aorta. Tracking of the MSC was conducted by the identification of the GFP-labeled cells using immunofluorescence. AAA sections stained with hematoxylin and eosin showed disorganization of the aortic tissue; collagen-muscle-elastin stain demonstrated fragmentation of elastin fibers. The presence of the implanted MSC in the aortic wall was evidenced by fluorescent microscopy showing GFP labeled cells. Engraftment of MSC up to 7 d after introduction was observed. Autologous implantation of bone marrow-derived MSC following aortic injury in a porcine model may be successfully accomplished. The long-term impact and therapeutic value of such cell-based therapy will require further investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call