Abstract
For premature infants, the peripheral oxygen saturation (SpO2) level has significant effects on their health. Manual control of the fraction of inspired oxygen (FiO2) by nursing staff is not only a highly labor intensive solution, but also a hard task to maintain infants' SpO2 within the safe range. For this clinical need, an automated oxygen control system for premature infants is developed, which is based on PI control and derivative feedback (DF) control. Clinical tests showed that, when there is either a manual-automatic mode switch and tube feeding, integral windup may occur which will lead to the degradation of control performance. To overcome this problem, an anti-windup control strategy is developed. Due to blood oxygen desaturations caused by unknown disturbances, a disturbance observer is adopted with the disturbance estimate used for disturbance rejection. According to the results of dynamic simulations, the controller with anti-windup and disturbance rejection design has the best performance among all controllers, it could achieve bumpless transfer during mode switching, decrease FiO2 in a timely manner when feeding is finished, and can shorten the recovery time from desaturation events and after feeding. This controller could minimize the time that SpO2 is outside the safe range, which is promising for clinical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.