Abstract
Multicellular organisms evolved sophisticated defense systems to confer protection against pathogens. An important characteristic of these immune systems is their ability to act both locally at the site of infection and at distal uninfected locations1-4. In insects, such as Drosophila melanogaster, RNA interference (RNAi) mediates antiviral immunity5-7. However, the antiviral RNAi defense in flies is thought to be a local, cell-autonomous process, since flies are considered unable to generate a systemic RNAi response8. Here we show that a recently defined double-stranded RNA (dsRNA) uptake pathway9 is essential for effective antiviral RNAi immunity in adult flies. Mutant flies defective in this dsRNA uptake pathway were hypersensitive to infection with Drosophila C virus (DCV) and Sindbis virus. Mortality in dsRNA-uptake defective flies was accompanied by 100-to 105-fold increases in viral titers and higher levels of viral RNA. Furthermore, inoculating naked dsRNA into flies elicited a sequence specific antiviral immune response that required an intact dsRNA uptake pathway. These findings suggest that spread of dsRNA to uninfected sites is essential for effective antiviral immunity. Strikingly, infection with Sindbis-GFP suppressed expression of host-encoded GFP at a distal site. Thus, similar to protein-based immunity in vertebrates, the antiviral RNAi-response in flies also relies on the systemic spread of a virus-specific immunity signal.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have