Abstract

Targeting "undruggable" targets with intrinsically disordered structures is of great significance for the treatment of disease. The transcription factor c-Myc controls global gene expression and is an attractive therapeutic target for multiple types of cancers. However, due to the lack of defined ligand binding pockets, targeted c-Myc have thus far been unsuccessful. Herein, to address the dilemma of lacking ligands, an efficient and high throughput aptamer screening strategy is established, named polystyrene microwell plate-based systematic evolution of ligands by exponential enrichment (microwell-SELEX), and identify the specific aptamer (MA9C1) against c-Myc. The multifunctional aptamer-based Proteolysis Targeting Chimeras (PROTAC) for proteolysis of the c-Myc (ProMyc) is developed using the aptamer MA9C1 as the ligand. ProMyc not only significantly degrades c-Myc by the ubiquitin-proteasome system, but also reduces the Max protein, synergistically inhibiting c-Myc transcriptional activity. Combination of the artificial cyclization and anti-PD-L1 aptamer (PA1)-based delivery system, circular PA1-ProMyc chimeras achieve tumor regression in the xenograft tumor model, laying a solid foundation for the development of efficacious c-Myc degrader for the clinic. Therefore, this aptamer-based degrader provides an invaluable potential degrader in drug discovery and anti-tumor therapy, offering a promising degrader to overcome the challenge of targeting intractable targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call