Abstract

Prostate cancer (PCa) is the second most frequent malignancy in men worldwide. Essential oils (EOs) are natural products which can act in cancer suppression by several mechanisms. In this work, a nanotechnological approach was used to develop and evaluate the antineoplastic effects of EOs loaded by nanostructured lipid carriers (NLCs). Three different NLC systems composed of cinnamon, sage or thyme EOs were optimized using factorial design (23). The optimal formulations were characterized in terms of biophysical parameters, structure, stability, in vivo safety and efficacy. All optimized NLC formulations exhibited excellent structural properties and stability over a year (25 °C). They proved to be in vitro and in vivo biocompatible on PNT2 normal prostate cells and on chicken embryos (CE), respectively. In PC3 PCa cells, optimized NLCs inhibited cell proliferation and migration and changed its morphology. In CE xenograft tumor, NLCs have inhibited tumor growth and angiogenesis. The results from this work suggested that all developed EO-based NLC formulations had their stability improved while the biological activity remains unchanged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call