Abstract

The fight against staphylococcal infection, increasing the effectiveness of methods of prevention and treatment of diseases of staphylococcal etiology is of interest to scientists and practitioners, both in Ukraine and around the world. The urgency of this problem is growing rapidly, as there is a tendency to increase the resistance of not only staphylococci, but also other gram-positive bacteria. The spread of methicillin-resistant staphylococci restricts the choice of antibiotics for the treatment of diseases of staphylococcal etiology. Staphylococcus aureus is the most common and dangerous type, which is one of the main factors of purulent-inflammatory lesions of the skin and mucous membranes. As a result of mutations, pathogenic staphylococci acquired resistance to antibacterial drugs. The main disadvantage of modern antibiotics is their non-selectivity. As a result of mutations, pathogenic staphylococci acquired resistance to antibacterial drugs. The main disadvantage of modern antibiotics is their non-selectivity. One of the unique and promising medicinal plants, which contains a rich complex of biologically active substances (BAS), is common hops (Humulus lupulus L.). The complex of BAS (flavonoids, hormones, vitamins, bitter, phenolic compounds, essential oils) causes anti-inflammatory, bactericidal, hyposensitizing and analgesic action of hops. The purpose of this work is to determine the antistaphylococcal activity of the carbon dioxide extract of hops and to justify the development on its basis of new antimicrobial agents for the prevention and treatment of infectious and purulent-inflammatory diseases. The following methods were used: microbiological (method of diffusion into agar (well method)) and mathematical and statistical. The high antimicrobial activity of the carbon dioxide extract of hops has been established for museum test strains of the genus Staphylococcus. The results of the studies testify to the prospects of further study of the bactericidal properties of the extract of hops carbon dioxide with the aim of creating effective antimicrobial agents on its basis for the prevention and treatment of infectious and purulent-inflammatory diseases of staphylococcal etiology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.