Abstract

Based on the Gurtin-Murdoch surface/interface model and complex potential theory, by constructing a new conformal mapping, the electrically permeable boundary condition with surface effect is established, and the antiplane fracture problem of three nanocracks emanating from a hexagonal nanohole in one-dimensional hexagonal piezoelectric quasicrystals with surface effect is studied. The exact solutions of the stress intensity factor of the phonon field and the phason field, the electric displacement intensity factor, and the energy release rate are obtained under the two electrically permeable and the electrically impermeable boundary conditions. The numerical examples show the influence of surface effect on the stress intensity factors of the phonon field and the phason field, the electric displacement intensity factor, and the energy release rate under the two boundary conditions. It can be seen that the surface effect leads to the coupling of the phonon field, phason field, and electric field, and with the decrease of cavity size, the influence of surface effect is more obvious.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.