Abstract

We study heat transfer in one-dimensional Fermi-Pasta-Ulam-Tsingou-type systems with long-range (LR) interactions. The strength of the LR interaction between two lattice sites decays as a power σ of the inverse of their distance. We focus on the strong LR regime (0≤σ≤1) and show that the thermal transport behaviors are remarkably nuanced. Specifically, we observe that the antipersistent (negative) energy current correlation in this regime is intricately dependent on σ, displaying a nonmonotonic variation. Notably, a significant qualitative change occurs at σ_{c}=0.5, where with respect to other σ values the correlation shows a minimum negative value. Furthermore, our findings also demonstrate that within the long-time range considered, these antipersistent correlations will eventually vanish for certain σ>0.5. The underlying mechanisms behind these intriguing phenomena are related to the crossover of two diverse space-time scaling properties of equilibrium heat correlations and the various scattering processes of phonons and discrete breathers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call