Abstract

Abstract Microalgae are unicellular free living entities and therefore their responses to excess of heavy metals must be faster and more efficient than those in vascular plants protected by various types of tissues. Up to date, numerous studies reported metal bioaccumulation potential of algae but metabolic responses have relatively rarely been monitored. Here I provide basic overview of quantitative changes of ascorbic acid (AA), reduced glutathione (GSH), phytochelatins (PCs) and selected related enzymes (ascorbate peroxidase and glutathione reductase) in some common microalgae exposed to various metals (cadmium mainly). Despite various culture and exposure conditions, some common signs of metal toxicity (including e.g. enhancement of phytochelatin biosynthesis) are clearly identifiable in algae. Other metal chelators such as organic acids are also briefly mentioned. Comparison with macroalgae, mosses and vascular plants is discussed in terms of basal values and evolutionary similarities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.