Abstract

Aldehyde dehydrogenase 3A1 (ALDH3A1) is highly expressed in epithelial cells and stromal keratocytes of mammalian cornea and is believed to play an important role in cellular defense. To explore a potential protective role against oxidative damage, a rabbit corneal fibroblastic cell line (TRK43) was stably transfected with the human ALDH3A1 and subjected to oxidative stress induced by H 2O 2, mitomycin C (MMC), or etoposide (VP-16). ALDH3A1-transfected cells were more resistant to H 2O 2, MMC, and VP-16 compared to the vector-transfected cells. All treatments induced apoptosis only in vector-transfected cells, which was associated with increased levels of 4-hydroxy-2-nonenal (4-HNE)-adducted proteins. Treatment with H 2O 2 resulted in a rise in reduced glutathione (GSH) levels in all groups but was more pronounced in the ALDH3A1-expressing cells. Treatment with the DNA-damaging agents led to GSH depletion in control groups, although the depletion was significantly less in ALDH3A1-expressing cells. Increased carbonylation of ALDH3A1 but not significant decline in enzymatic activity was observed after all treatments. In conclusion, our results suggest that ALDH3A1 may act to protect corneal cells against cellular oxidative damage by metabolizing toxic lipid peroxidation products (e.g., 4-HNE), maintaining cellular GSH levels and redox balance, and operating as an antioxidant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.