Abstract

BackgroundSpices and their bioactive components are more promising attractions for their inclusion in diet-based regimes to improve human health. These are sources of natural antioxidants and play an important role in the chemoprevention of diseases and aging. The aim of the current study was to explore the antioxidant potential of cinnamon; a widely used spice throughout the world.MethodsThe current research was aimed to investigate the antioxidant potential of cinnamon extract. For the purpose, cinnamon sticks were procured from local super market, while palm oil was obtained from local oil industry. The resultant extract was analyzed for its antioxidant activity through total phenolic content (TPC), free radical scavenging activity (DPPH assay), and total antioxidant activity was measured by ferric reducing antioxidant power (FRAP) test. The shelf life of palm oil was checked by adding cinnamon extract in oil at different levels i.e., 0.05, 0.10, 0.15, 0.20 and 0.25%, to compare the antioxidant potential of the extract whereas, To acted as control and TBHA @ 0.1% was used as synthetic antioxidant in the oil samples. The oil samples were analyzed for rancidity check during storage (after every seven days for a storage period of four weeks).ResultsThe results indicated that total phenolic contents (TPC); 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) values of cinnamon extract were as 355.01 ± 8.34 gallic acid equivalent per gram (mg GAE/g), 90.18 ± 2.12 (%) and 132.82 ± 3.12 (μmol/g), respectively. The oxidative parameters for treatments i.e., To, TBHA, T1, T2, T3, T4, T5 were recorded as peroxide value (2.61 ± 0.07, 2.42 ± 0.08, 2.57 ± 0.05, 2.56 ± 0.03, 2.54 ± 0.02, 2.54 ± 0.01, 2.46 ± 0.06 meq/kg, respectively), free fatty acids (0.601 ± 0.05, 0.522 ± 0.02, 0.580 ± 0.07, 0.572 ± 0.03, 0.56 ± 00.07, 0.552 ± 0.03, 0.536 ± 0.05%, respectively), TBA value (22.4 ± 1.45, 20.1 ± 0.73, 21.8 ± 0.42, 21.2 ± 1.56, 20.7 ± 0.48, 20.5 ± 0.59, 20.2 ± 0.91 μg/kg, respectively) and iodine value (52.82 ± 2.12, 52.71 ± 2.38, 52.68 ± 2.96, 52.97 ± 2.14, 52.93 ± 2.12, 53.15 ± 2.38, 52.71 ± 2.96, respectively). Overall, the statistical analysis indicated that all parameters regarding oil stability i.e., peroxide value (PV), free fatty acid content, (FFA) thiobarbituric acid (TBA) value and iodine value (IV) were significant with respect to treatments and storage.ConclusionFrom the present study, it can be concluded that the cinnamon extract proved effective in reducing the lipid oxidation of palm oil and it can be successfully used in place of synthetic antioxidants in food preparations.

Highlights

  • Spices and their bioactive components are more promising attractions for their inclusion in dietbased regimes to improve human health

  • The results indicated that total phenolic contents (TPC); 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) values of cinnamon extract were as 355.01 ± 8.34 gallic acid equivalent per gram, 90.18 ± 2.12 (%) and 132.82 ± 3.12, respectively

  • The statistical analysis indicated that all parameters regarding oil stability i.e., peroxide value (PV), free fatty acid content, (FFA) thiobarbituric acid (TBA) value and iodine value (IV) were significant with respect to treatments and storage

Read more

Summary

Introduction

Spices and their bioactive components are more promising attractions for their inclusion in dietbased regimes to improve human health These are sources of natural antioxidants and play an important role in the chemoprevention of diseases and aging. In the recent era health enhancing properties of specific foods have been documented with antioxidant and anti-inflammatory properties [1] According to the current nutritional guidelines, diet and health interplay has encouraged the consumers to choose food with some additional health benefits beyond basic nutrition [2] These are sources of natural antioxidants that play key role in prevention of aging and diseases [3, 4]. It has been used as anti-inflammatory, antitermitic, nematicidal, mosquito larvicidal, insecticidal, antimycotic, and anticancer agent [10,11,12]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call