Abstract

Abstract The current research focuses on the silver nanoparticles (AgNPs) synthesis from the Cassia alata aqueous leaf extract. Various production parameters like pH (4, 5, 6, 7, 8, 9, and 10), metal ion concentration (1, 2, 3, 4, and 5 mM), and substrate (leaf extract) concentration (0.5, 1, 1.5, 2 and 2.5 mL) were optimized. UV-visible spectroscopy was used to identify the production by scanning the wavelength from 200 to 800 nm. Visual color change from light green to brown was designated as prior confirmation of the AgNP production. Physical characterization of AgNPs was carried out using scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray energy-dispersive spectroscopy, and X-ray diffraction. Furthermore, the obtained AgNPs show significant antibacterial activity for Staphylococcus aureus, Pseudomonas sp. Klebsiella sp., Proteus sp., and Enterobacter sp. The antioxidant potential was determined by α,α-diphenyl-β-picrylhydrazyl assay and cytotoxicity by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay on human lung cancer cell lines (A549). AgNPs confirmed potent antibacterial activity against skin infections, demonstrating their medicinal significance and are therefore crucial for creating a medicinal formulation with antibacterial properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.