Abstract

The effects of different carbon sources on the antioxidant activity changes of exopolysaccharides (EPSs) were determined for the strains Lactobacillus plantarum LPC-1 with glucose, sucrose and its mixture as carbon sources, respectively. Meanwhile, GC-MS datasets coupled with multivariate statistical methods were used to investigate metabolic changes of EPSs-producing L. plantarum cultured with different carbon source. Among carbon sources examined, both of glucose and sucrose were favorable for the cell growth, while the maximum EPSs yield was achieved when sucrose was employed. EPSs cultured with different carbon sources showed remarkable different antioxidant activities, and EPSs with sucrose or mixed sugar as carbon source exhibited a promising antioxidant activity, such as hydroxyl scavenging activity and DPPH radical scavenging activity. Results from rice cultivation showed a similar conclusion that there were also significant differences in the antioxidant activities of EPSs obtained from different carbon sources in inducing rice resistance to chromium stress, but addition of EPSs had no significant impact on the uptake of Cr metals. Principal component analysis showed clear differences in metabolites among different treatment, and the glycolysis and tricarboxylic acid cycle were decreased when sucrose or mixed sugar was used as carbon source, and the production of lactic acid was also reduced, which might be the main reasons for the overproduction of EPSs. Our results indicated that Lactobacillus strain, depending on the carbon source in the medium, could produce EPSs of different biological properties, and the metabolomic analysis findings provided the first omics view of cell growth and EPSs synthesis in L. plantarum, which would be a theoretical basis for further improving the production of EPSs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.