Abstract

Avenanthramides (AVAs), unique phenolic compounds in oats, have attracted increasing interest due to their health benefits. Eight representative AVAs were studied using the density functional theory (DFT) method to elucidate their antioxidant activity and mechanism. Preference of different mechanisms was evaluated based on thermodynamic descriptors involved in double (2H+/2e-) free radical scavenging reactions. It was found that the hydrogen atom transfer (HAT) mechanism is more favorable in the gas and benzene phases, while sequential proton loss electron transfer (SPLET) is preferred in polar media. The results suggest the feasibility of the double HAT and double SPLET mechanisms for 2s and c-series AVAs. The sequential triple proton loss double electron transfer (StPLdET) mechanism represents the dominant pathway in aqueous solution at physiological pH. In addition, the sequential proton loss hydrogen atom transfer (SPLHAT) mechanism provides an alternative pathway to trap free radicals. Results also revealed the important role of the catechol, guaiacyl, and carboxyl moieties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.