Abstract
Tuberculosis (TB) is a massive problem for public health and is the leading cause of illness and death worldwide. Rosemary (Rosmarinus officinalis) is used traditionally to treat many diseases, such as infections of the lungs including pulmonary TB. R. officinalis was collected from Al Anbar Governorate, Iraq, and was extracted with deep eutectic solvents (DESs) of many different kinds and with conventional water solvent. The antimycobacterial activities of the R. officinalis extracts were tested against multidrug-resistant (MDR) Mycobacterium tuberculosis by agar disc diffusion assay. Minimum inhibitory concentrations were measured spectrophotometrically at 570 nm. Then, a time-kill assay and cell membrane integrity analysis were conducted to investigate the effects of the most active extracts on cell growth. The in vitro cytotoxicity of the most active extracts was evaluated against Rat Embryonic Fibroblasts (REF) cell line by MTT assay. Liquid chromatography-mass spectrometry (LC-MS) was conducted to analyze the chemical components of the most active extracts. At 200 mg/mL concentration, a significant inhibition activity was seen in DES2: Tailor (DIZ = 17.33 ± 1.15 mm), followed by DES3: ChGl, DES1: LGH and DES4: ChXl. The best result was DES2: Tailor, which had a MIC of 3.12 mg/mL and an MBC of 12.5 mg/mL. The DES2 extract exhibited a high drop in the number of colonies over time, killing more than 80 colonies. The main phytochemical compounds of the R. officinalis extract were camphene, camphenilol, α-pinene, limonene, apigenin, camphor, carnosol, linalool and myrcene. R. officinalis extracts obtained by DESs have shown evident power in treating tuberculosis, and extraction by DES is a greener procedure than the methods involving conventional extraction solvents. As a result, additional research into the application of DES should be considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.